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Whittaker functionals

F: local field of char.0, G : reductive group over F.

M(G ): smooth admissible representations (of moderate growth).
Assume G quasisplit: fix Borel B = HN, n := LieF(N).

Define n′ = [n, n] , v = n/n′,Ψ = v∗ ⊂ n∗

Ψ ←→ Lie algebra characters of n ←→ unitary group characters of N
Ψ ⊃ Ψ× := non-degenerate characters.
For ψ ∈ Ψ, π ∈ M(G ) define

Wh∗ψ(π) := Homcts
N (π,ψ),Ψ(π) := {ψ ∈ Ψ : Wh∗ψ(π) 6= 0}

(Casselman) For any ψ ∈ Ψ×, π 7→ Wh∗ψ(π) is an exact functor.

Theorem (Gelfand-Kazhdan, Shalika)

For π ∈ Irr(G ), ψ ∈ Ψ×, dimWh∗ψ(π) ≤ 1.
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Kostant’s theorem

We say π is generic if ∃ψ ∈ Ψ× s.t. Whψ(π) 6= 0.

Theorem (Kostant, Rodier)
π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near e ∈ G, the character distribution (asymptotically) equals to a linear
combination of Fourier transforms of Haar measures of nilpotent coadjoint
orbits.

χπ ≈∑ aOF (µO)

Define WF(π) = ∪{O | aO 6= 0} ⊂ N , where N ⊂ g∗ denotes the
nilpotent cone.

π is called large if WF(π) = N .
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Case of non-generic representations

In the p-adic case, Moeglin and Waldspurger give a very general
definition of degenerate Whittaker models and give a precise
connection between their existence and the wave-front set WF(π).
In the real case there is no full analog currently.

Several authors (Matumoto, Yamashita, . . . ) consider generalized
Whittaker functionals ∼ generic characters for smaller nilradicals
We consider degenerate functionals ∼ arbitrary characters of n.
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Main results

From now on, let F = R.

The finite group FG = NormGC
(G ) / (ZGC

· G ) acts onM (G ).

For π ∈ M (G ) , define π̃ =
⊕ {πa : a ∈ FG }.

Theorem (1)

For π ∈ M (G ) we have

Ψ(π) ⊂WF(π) ∩Ψ ⊂ Ψ (π̃) (1)

Moreover if G = GLn (R) or if G is a complex group then π̃ = π and

Ψ(π) = WF(π) ∩Ψ (2)
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Main results

Theorem (2)

The sets Ψ (π) and WF (π) determine one another if

1 G = GLn (R) or GLn (C) or SLn (C) and π ∈ M (G )

2 G = Sp2n (C) or On (C) or SOn (C) and π is irreducible

Key observation for the second statement:

Theorem (3)
Let O be a nilpotent orbit for a complex classical Lie algebra then O is
uniquely determined by O ∩Ψ.
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Algebraic setting

From now on, we let n, g, etc. denote complexified Lie algebras.

Let K ⊂ G be maximal compact subgroup. A (g,K )-module is a
complex vector space with compatible actions of g and K such that
every vector is K -finite.

Let HC(G ) denote the category of (g,K )-modules of finite length

Theorem (Casselman-Wallach)

The functor π 7→ πK−finite is an equivalence of categories
M(G ) ∼= HC(G )

For M ∈ HC(G ) and ψ ∈ ΨC we define

Wh′ψ(M) := Homn(M,ψ), Ψ(M) := {ψ ∈ ΨC |Wh′ψ(M) 6= 0}

Kostant showed that π is generic iff πK−finite is generic, though
dimensions of Whittaker spaces differ considerably.
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Associated varieties and our algebraic theorem

Using PBW filtration, grU (g) = Sym(g) = Pol(g∗)

Using this, one can define

AsV(M) ⊂ AnV(M) ⊂ N

Schmid and Vilonen proved that WF(π) and AsV(πK−finite)
determine each other.

Let prn∗ : g∗ → n∗ denote the natural projection (restriction to n).

Theorem (0)

For M ∈ HC we have Ψ(M) = prn∗(AsV (M)) ∩Ψ.
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Idea of the proof

Since n/[n, n] is commutative, from Nakayama’s lemma we have
Ψ(M) = Supp(M/[n, n]M). Now, restriction to n corresponds to
projection on n∗ and quotient by [n, n] corresponds to intersection
with Ψ = [n, n]⊥.

However, in non-commutative situation one could even have
V = [n, n]V . For example, let G = GL(3,R) and consider the
identification of n with the Heisenberg Lie algebra

〈
x , ddx , 1

〉
acting

on V = C [x ].

Let b = h+ n be the Borel subalgebra of g, let V be a b-module. We
define the n-adic completion and Jacquet module as follows:

V̂ = V̂n = lim←−
V/niV , J (V ) = Jb (V ) =

(
V̂n
)h-finite
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〉
acting

on V = C [x ].

Let b = h+ n be the Borel subalgebra of g, let V be a b-module. We
define the n-adic completion and Jacquet module as follows:

V̂ = V̂n = lim←−
V/niV , J (V ) = Jb (V ) =

(
V̂n
)h-finite
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Sketch of the proof

Define n′ = [n, n] and CV = H0 (n′,V ) = V/n′V .

(Nakayama) Ψ(M) = Suppv(CM) = AnVv (CM)
(Joseph+Gabber) AnVv (CM) = AnVv

(
ĈM

)
= AnVv (J (CM))

(Easy) J(CM) ≈ C (JM) as b-modules.
(Bernstein+Joseph)
AnVv (J (CM)) = AsVv(C (JM)) = AsVn(JM) ∩Ψ.
(Ginzburg+ENV) AsVn(JM) ⊃ AsVn(M) ∩Ψ.
(Casselman-Osborne+Gabber) AsVn(M) = prn∗(AsVg(M)).
Thus Ψ(M) ⊃ prn∗(AsVg(M)) ∩Ψ; other inclusion is easy.
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ĈM

)
= AnVv (J (CM))

(Easy) J(CM) ≈ C (JM) as b-modules.
(Bernstein+Joseph)
AnVv (J (CM)) = AsVv(C (JM)) = AsVn(JM) ∩Ψ.
(Ginzburg+ENV) AsVn(JM) ⊃ AsVn(M) ∩Ψ.
(Casselman-Osborne+Gabber) AsVn(M) = prn∗(AsVg(M)).
Thus Ψ(M) ⊃ prn∗(AsVg(M)) ∩Ψ; other inclusion is easy.

Gourevitch-Sahi () Degenerate Whittaker functionals August 2012 10 / 13



Sketch of the proof

Define n′ = [n, n] and CV = H0 (n′,V ) = V/n′V .
(Nakayama) Ψ(M) = Suppv(CM) = AnVv (CM)
(Joseph+Gabber) AnVv (CM) = AnVv

(
ĈM
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Proof of Theorem 3

Proof.
For GL (n,R) and SL (n,C) ∼ Jordan form

Orbits for Sp2n (C) or On (C) ∼ partitions satisfying certain
conditions

An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
For each partition λ and each k there is a partition µ ≤ λ, which
meets Ψ and satisfies µ1 + · · ·+ µk = λ1 + · · ·+ λk

Result for SOn (C) requires slight additional argument.

Gourevitch-Sahi () Degenerate Whittaker functionals August 2012 11 / 13



Proof of Theorem 3

Proof.
For GL (n,R) and SL (n,C) ∼ Jordan form

Orbits for Sp2n (C) or On (C) ∼ partitions satisfying certain
conditions

An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity

For each partition λ and each k there is a partition µ ≤ λ, which
meets Ψ and satisfies µ1 + · · ·+ µk = λ1 + · · ·+ λk

Result for SOn (C) requires slight additional argument.

Gourevitch-Sahi () Degenerate Whittaker functionals August 2012 11 / 13



Proof of Theorem 3

Proof.
For GL (n,R) and SL (n,C) ∼ Jordan form

Orbits for Sp2n (C) or On (C) ∼ partitions satisfying certain
conditions

An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
For each partition λ and each k there is a partition µ ≤ λ, which
meets Ψ and satisfies µ1 + · · ·+ µk = λ1 + · · ·+ λk

Result for SOn (C) requires slight additional argument.

Gourevitch-Sahi () Degenerate Whittaker functionals August 2012 11 / 13



Proof of Theorem 3

Proof.
For GL (n,R) and SL (n,C) ∼ Jordan form

Orbits for Sp2n (C) or On (C) ∼ partitions satisfying certain
conditions

An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
For each partition λ and each k there is a partition µ ≤ λ, which
meets Ψ and satisfies µ1 + · · ·+ µk = λ1 + · · ·+ λk

Result for SOn (C) requires slight additional argument.

Gourevitch-Sahi () Degenerate Whittaker functionals August 2012 11 / 13



Counterexamples for exceptional groups

Fact
Theorem 3 is false for every exceptional group.

We list all orbits whose closures have the same intersection with Ψ.
We follow Bala-Carter notation and we have underlined the special orbits.
For G = G2: G2(a1) and Ã1
For G = F4:

1 F4(a1) and F4(a2)
2 F4(a3) and C3(a1)

For G = E6:

1 E6(a1) and D5
2 D4(a1) and A3 + A1

For G = E7:

1 E7(a1) and E7(a2)
2 E7(a3) and D6
3 E6(a1) and E7(a4).
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Counterexamples for exceptional groups

For G = E8:

1 E8(a1), E8(a2), and E8(a3)
2 E8(a4), E8(b4) and E8(a5)
3 E7(a1), E8(b5) and E7(a2)
4 E8(a6) and D7(a1)
5 E6(a1) and E7(a4)
6 E8(a7), E7(a5), E6(a3) + A1, and D6(a2).
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