Degenerate Whittaker functionals for real reductive groups

Dmitry Gourevitch \& Siddhartha Sahi
Conference on L-functions, Jeju

August 2012

Whittaker functionals

- \mathbb{F} : local field of char. $0, G$: reductive group over \mathbb{F}.

Whittaker functionals

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).

Whittaker functionals

- \mathbb{F} : local field of char. $0, G$: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B=H N, \mathfrak{n}:=\operatorname{Lie}_{\mathbb{F}}(N)$.

$$
\text { Define } \quad \mathfrak{n}^{\prime}=[\mathfrak{n}, \mathfrak{n}], \mathfrak{v}=\mathfrak{n} / \mathfrak{n}^{\prime}, \Psi=\mathfrak{v}^{*} \subset \mathfrak{n}^{*}
$$

Whittaker functionals

- \mathbb{F} : local field of char. $0, G$: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B=H N, \mathfrak{n}:=\operatorname{Lie}_{\mathbb{F}}(N)$.

$$
\text { Define } \quad \mathfrak{n}^{\prime}=[\mathfrak{n}, \mathfrak{n}], \mathfrak{v}=\mathfrak{n} / \mathfrak{n}^{\prime}, \Psi=\mathfrak{v}^{*} \subset \mathfrak{n}^{*}
$$

- $\Psi \longleftrightarrow$ Lie algebra characters of $\mathfrak{n} \longleftrightarrow$ unitary group characters of N

Whittaker functionals

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B=H N, \mathfrak{n}:=\operatorname{Lie}_{\mathbb{F}}(N)$.

$$
\text { Define } \quad \mathfrak{n}^{\prime}=[\mathfrak{n}, \mathfrak{n}], \mathfrak{v}=\mathfrak{n} / \mathfrak{n}^{\prime}, \Psi=\mathfrak{v}^{*} \subset \mathfrak{n}^{*}
$$

- $\Psi \longleftrightarrow$ Lie algebra characters of $\mathfrak{n} \longleftrightarrow$ unitary group characters of N
- $\Psi \supset \Psi^{\times}:=$non-degenerate characters.

Whittaker functionals

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B=H N, \mathfrak{n}:=\operatorname{Lie}_{\mathbb{F}}(N)$.

$$
\text { Define } \quad \mathfrak{n}^{\prime}=[\mathfrak{n}, \mathfrak{n}], \mathfrak{v}=\mathfrak{n} / \mathfrak{n}^{\prime}, \Psi=\mathfrak{v}^{*} \subset \mathfrak{n}^{*}
$$

- $\Psi \longleftrightarrow$ Lie algebra characters of $\mathfrak{n} \longleftrightarrow$ unitary group characters of N
- $\Psi \supset \Psi^{\times}:=$non-degenerate characters.
- For $\psi \in \Psi, \pi \in \mathcal{M}(G)$ define

$$
W h_{\psi}^{*}(\pi):=\operatorname{Hom}_{N}^{c t s}(\pi, \psi), \Psi(\pi):=\left\{\psi \in \Psi: W h_{\psi}^{*}(\pi) \neq 0\right\}
$$

Whittaker functionals

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B=H N, \mathfrak{n}:=\operatorname{Lie}_{\mathbb{F}}(N)$.

$$
\text { Define } \quad \mathfrak{n}^{\prime}=[\mathfrak{n}, \mathfrak{n}], \mathfrak{v}=\mathfrak{n} / \mathfrak{n}^{\prime}, \Psi=\mathfrak{v}^{*} \subset \mathfrak{n}^{*}
$$

- $\Psi \longleftrightarrow$ Lie algebra characters of $\mathfrak{n} \longleftrightarrow$ unitary group characters of N
- $\Psi \supset \Psi^{\times}:=$non-degenerate characters.
- For $\psi \in \Psi, \pi \in \mathcal{M}(G)$ define

$$
W h_{\psi}^{*}(\pi):=\operatorname{Hom}_{N}^{c t s}(\pi, \psi), \Psi(\pi):=\left\{\psi \in \Psi: W h_{\psi}^{*}(\pi) \neq 0\right\}
$$

- (Casselman) For any $\psi \in \Psi^{\times}, \quad \pi \mapsto W h_{\psi}^{*}(\pi)$ is an exact functor.

Whittaker functionals

- \mathbb{F} : local field of char. $0, G$: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B=H N, \mathfrak{n}:=\operatorname{Lie}_{\mathbb{F}}(N)$.

$$
\text { Define } \quad \mathfrak{n}^{\prime}=[\mathfrak{n}, \mathfrak{n}], \mathfrak{v}=\mathfrak{n} / \mathfrak{n}^{\prime}, \Psi=\mathfrak{v}^{*} \subset \mathfrak{n}^{*}
$$

- $\Psi \longleftrightarrow$ Lie algebra characters of $\mathfrak{n} \longleftrightarrow$ unitary group characters of N
- $\Psi \supset \Psi^{\times}:=$non-degenerate characters.
- For $\psi \in \Psi, \pi \in \mathcal{M}(G)$ define

$$
W h_{\psi}^{*}(\pi):=\operatorname{Hom}_{N}^{c t s}(\pi, \psi), \Psi(\pi):=\left\{\psi \in \Psi: W h_{\psi}^{*}(\pi) \neq 0\right\}
$$

- (Casselman) For any $\psi \in \Psi^{\times}, \quad \pi \mapsto W h_{\psi}^{*}(\pi)$ is an exact functor.

Theorem (Gelfand-Kazhdan, Shalika)

For $\pi \in \operatorname{Irr}(G), \psi \in \Psi^{\times}, \operatorname{dim} W h_{\psi}^{*}(\pi) \leq 1$.

Kostant's theorem

- We say π is generic if $\exists \psi \in \Psi^{\times}$s.t. $W h_{\psi}(\pi) \neq 0$.

Kostant's theorem

- We say π is generic if $\exists \psi \in \Psi^{\times}$s.t. $W h_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

π is generic iff it is large.

Kostant's theorem

- We say π is generic if $\exists \psi \in \Psi^{\times}$s.t. $W h_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\chi_{\pi} \approx \sum a_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

Kostant's theorem

- We say π is generic if $\exists \psi \in \Psi^{\times}$s.t. $W h_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\chi_{\pi} \approx \sum a_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

- Define $\operatorname{WF}(\pi)=\cup\left\{\overline{\mathcal{O}} \mid a_{\mathcal{O}} \neq 0\right\} \subset \mathcal{N}$, where $\mathcal{N} \subset \mathfrak{g}^{*}$ denotes the nilpotent cone.

Kostant's theorem

- We say π is generic if $\exists \psi \in \Psi^{\times}$s.t. $W h_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\chi_{\pi} \approx \sum a_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

- Define $\operatorname{WF}(\pi)=\cup\left\{\overline{\mathcal{O}} \mid a_{\mathcal{O}} \neq 0\right\} \subset \mathcal{N}$, where $\mathcal{N} \subset \mathfrak{g}^{*}$ denotes the nilpotent cone.
- π is called large if $\operatorname{WF}(\pi)=\mathcal{N}$.

Case of non-generic representations

- In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set $\mathrm{WF}(\pi)$. In the real case there is no full analog currently.

Case of non-generic representations

- In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set $\mathrm{WF}(\pi)$. In the real case there is no full analog currently.
- Several authors (Matumoto, Yamashita, ...) consider generalized Whittaker functionals \sim generic characters for smaller nilradicals

Case of non-generic representations

- In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set $\mathrm{WF}(\pi)$. In the real case there is no full analog currently.
- Several authors (Matumoto, Yamashita, ...) consider generalized Whittaker functionals \sim generic characters for smaller nilradicals
- We consider degenerate functionals \sim arbitrary characters of \mathfrak{n}.

Main results

- From now on, let $\mathbb{F}=\mathbb{R}$.

Main results

- From now on, let $\mathbb{F}=\mathbb{R}$.
- The finite group $F_{G}=\operatorname{Norm}_{G_{C}}(G) /\left(Z_{G_{C}} \cdot G\right)$ acts on $\mathcal{M}(G)$.

Main results

- From now on, let $\mathbb{F}=\mathbb{R}$.
- The finite group $F_{G}=\operatorname{Norm}_{G_{C}}(G) /\left(Z_{G_{C}} \cdot G\right)$ acts on $\mathcal{M}(G)$.
- For $\pi \in \mathcal{M}(G)$, define $\tilde{\pi}=\bigoplus\left\{\pi^{a}: a \in F_{G}\right\}$.

Main results

- From now on, let $\mathbb{F}=\mathbb{R}$.
- The finite group $F_{G}=\operatorname{Norm}_{G_{C}}(G) /\left(Z_{G_{C}} \cdot G\right)$ acts on $\mathcal{M}(G)$.
- For $\pi \in \mathcal{M}(G)$, define $\tilde{\pi}=\bigoplus\left\{\pi^{a}: a \in F_{G}\right\}$.

Theorem (1)

For $\pi \in \mathcal{M}(G)$ we have

$$
\begin{equation*}
\Psi(\pi) \subset \mathrm{WF}(\pi) \cap \Psi \subset \Psi(\tilde{\pi}) \tag{1}
\end{equation*}
$$

Moreover if $G=G L_{n}(\mathbb{R})$ or if G is a complex group then $\tilde{\pi}=\pi$ and

$$
\begin{equation*}
\Psi(\pi)=\mathrm{WF}(\pi) \cap \Psi \tag{2}
\end{equation*}
$$

Main results

Theorem (2)

The sets $\Psi(\pi)$ and $\mathrm{WF}(\pi)$ determine one another if
(1) $G=G L_{n}(\mathbb{R})$ or $G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$

Main results

Theorem (2)

The sets $\Psi(\pi)$ and $\mathrm{WF}(\pi)$ determine one another if
(1) $G=G L_{n}(\mathbb{R})$ or $G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$
(2) $G=S p_{2 n}(\mathbb{C})$ or $O_{n}(\mathbb{C})$ or $S O_{n}(\mathbb{C})$ and π is irreducible

Main results

Theorem (2)

The sets $\Psi(\pi)$ and $\mathrm{WF}(\pi)$ determine one another if
(1) $G=G L_{n}(\mathbb{R})$ or $G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$
(2) $G=S p_{2 n}(\mathbb{C})$ or $O_{n}(\mathbb{C})$ or $S O_{n}(\mathbb{C})$ and π is irreducible

Main results

Theorem (2)

The sets $\Psi(\pi)$ and $\mathrm{WF}(\pi)$ determine one another if
(1) $G=G L_{n}(\mathbb{R})$ or $G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$
(2) $G=S p_{2 n}(\mathbb{C})$ or $O_{n}(\mathbb{C})$ or $S O_{n}(\mathbb{C})$ and π is irreducible

Key observation for the second statement:

Theorem (3)

Let \mathcal{O} be a nilpotent orbit for a complex classical Lie algebra then \mathcal{O} is uniquely determined by $\overline{\mathcal{O}} \cap \Psi$.

Algebraic setting

- From now on, we let $\mathfrak{n}, \mathfrak{g}$, etc. denote complexified Lie algebras.

Algebraic setting

- From now on, we let $\mathfrak{n}, \mathfrak{g}$, etc. denote complexified Lie algebras.
- Let $K \subset G$ be maximal compact subgroup. A (\mathfrak{g}, K)-module is a complex vector space with compatible actions of \mathfrak{g} and K such that every vector is K-finite.

Algebraic setting

- From now on, we let $\mathfrak{n}, \mathfrak{g}$, etc. denote complexified Lie algebras.
- Let $K \subset G$ be maximal compact subgroup. A (\mathfrak{g}, K)-module is a complex vector space with compatible actions of \mathfrak{g} and K such that every vector is K-finite.
- Let $\mathcal{H C}(G)$ denote the category of (\mathfrak{g}, K)-modules of finite length

Algebraic setting

- From now on, we let $\mathfrak{n}, \mathfrak{g}$, etc. denote complexified Lie algebras.
- Let $K \subset G$ be maximal compact subgroup. A (\mathfrak{g}, K)-module is a complex vector space with compatible actions of \mathfrak{g} and K such that every vector is K-finite.
- Let $\mathcal{H C}(G)$ denote the category of (\mathfrak{g}, K)-modules of finite length

Theorem (Casselman-Wallach)

The functor $\pi \mapsto \pi^{K-\text { finite }}$ is an equivalence of categories $\mathcal{M}(G) \cong \mathcal{H C}(G)$

Algebraic setting

- From now on, we let $\mathfrak{n}, \mathfrak{g}$, etc. denote complexified Lie algebras.
- Let $K \subset G$ be maximal compact subgroup. A (\mathfrak{g}, K)-module is a complex vector space with compatible actions of \mathfrak{g} and K such that every vector is K-finite.
- Let $\mathcal{H C}(G)$ denote the category of (\mathfrak{g}, K)-modules of finite length

Theorem (Casselman-Wallach)

The functor $\pi \mapsto \pi^{K-\text { finite }}$ is an equivalence of categories $\mathcal{M}(G) \cong \mathcal{H C}(G)$

- For $M \in \mathcal{H C}(G)$ and $\psi \in \Psi_{C}$ we define

$$
W h_{\psi}^{\prime}(M):=\operatorname{Hom}_{\mathfrak{n}}(M, \psi), \quad \Psi(M):=\left\{\psi \in \Psi_{\mathrm{C}} \mid W h_{\psi}^{\prime}(M) \neq 0\right\}
$$

Algebraic setting

- From now on, we let $\mathfrak{n}, \mathfrak{g}$, etc. denote complexified Lie algebras.
- Let $K \subset G$ be maximal compact subgroup. A (\mathfrak{g}, K)-module is a complex vector space with compatible actions of \mathfrak{g} and K such that every vector is K-finite.
- Let $\mathcal{H C}(G)$ denote the category of (\mathfrak{g}, K)-modules of finite length

Theorem (Casselman-Wallach)

The functor $\pi \mapsto \pi^{K-\text { finite }}$ is an equivalence of categories $\mathcal{M}(G) \cong \mathcal{H C}(G)$

- For $M \in \mathcal{H C}(G)$ and $\psi \in \Psi_{C}$ we define

$$
W h_{\psi}^{\prime}(M):=\operatorname{Hom}_{\mathfrak{n}}(M, \psi), \quad \Psi(M):=\left\{\psi \in \Psi_{\mathrm{C}} \mid W h_{\psi}^{\prime}(M) \neq 0\right\}
$$

- Kostant showed that π is generic iff $\pi^{K-f i n i t e}$ is generic, though dimensions of Whittaker spaces differ considerably.

Associated varieties and our algebraic theorem

- Using PBW filtration, $\operatorname{gr\mathcal {U}}(\mathfrak{g})=\operatorname{Sym}(\mathfrak{g})=\operatorname{Pol}\left(\mathfrak{g}^{*}\right)$

Associated varieties and our algebraic theorem

- Using PBW filtration, $\operatorname{gr} \mathcal{U}(\mathfrak{g})=\operatorname{Sym}(\mathfrak{g})=\operatorname{Pol}\left(\mathfrak{g}^{*}\right)$
- Using this, one can define

$$
\operatorname{As\mathcal {V}}(M) \subset \operatorname{An\mathcal {V}}(M) \subset \mathcal{N}
$$

Associated varieties and our algebraic theorem

- Using PBW filtration, $\operatorname{gr} \mathcal{U}(\mathfrak{g})=\operatorname{Sym}(\mathfrak{g})=\operatorname{Pol}\left(\mathfrak{g}^{*}\right)$
- Using this, one can define

$$
\operatorname{As\mathcal {V}}(M) \subset \operatorname{An\mathcal {V}}(M) \subset \mathcal{N}
$$

- Schmid and Vilonen proved that $\operatorname{WF}(\pi)$ and $\operatorname{As} \mathcal{V}\left(\pi^{K-f i n i t e}\right)$ determine each other.

Associated varieties and our algebraic theorem

- Using PBW filtration, $\operatorname{gr} \mathcal{U}(\mathfrak{g})=\operatorname{Sym}(\mathfrak{g})=\operatorname{Pol}\left(\mathfrak{g}^{*}\right)$
- Using this, one can define

$$
\operatorname{As} \mathcal{V}(M) \subset \operatorname{An\mathcal {V}}(M) \subset \mathcal{N}
$$

- Schmid and Vilonen proved that $\operatorname{WF}(\pi)$ and $\operatorname{As} \mathcal{V}\left(\pi^{K-f i n i t e}\right)$ determine each other.
- Let $p r_{\mathfrak{n}^{*}}: \mathfrak{g}^{*} \rightarrow \mathfrak{n}^{*}$ denote the natural projection (restriction to \mathfrak{n}).

Associated varieties and our algebraic theorem

- Using PBW filtration, $\operatorname{gr} \mathcal{U}(\mathfrak{g})=\operatorname{Sym}(\mathfrak{g})=\operatorname{Pol}\left(\mathfrak{g}^{*}\right)$
- Using this, one can define

$$
\operatorname{As} \mathcal{V}(M) \subset \operatorname{An\mathcal {V}}(M) \subset \mathcal{N}
$$

- Schmid and Vilonen proved that $\operatorname{WF}(\pi)$ and $\operatorname{As} \mathcal{V}\left(\pi^{K-f i n i t e}\right)$ determine each other.
- Let $p r_{\mathfrak{n}^{*}}: \mathfrak{g}^{*} \rightarrow \mathfrak{n}^{*}$ denote the natural projection (restriction to \mathfrak{n}).

Theorem (0)

For $M \in \mathcal{H C}$ we have $\Psi(M)=p r_{\mathrm{n}^{*}}(\operatorname{As} \mathcal{V}(M)) \cap \Psi$.

Idea of the proof

- Since $\mathfrak{n} /[\mathfrak{n}, \mathfrak{n}]$ is commutative, from Nakayama's lemma we have $\Psi(M)=\operatorname{Supp}(M /[\mathfrak{n}, \mathfrak{n}] M)$. Now, restriction to \mathfrak{n} corresponds to projection on \mathfrak{n}^{*} and quotient by $[\mathfrak{n}, \mathfrak{n}]$ corresponds to intersection with $\Psi=[\mathfrak{n}, \mathfrak{n}]^{\perp}$.

Idea of the proof

- Since $\mathfrak{n} /[\mathfrak{n}, \mathfrak{n}]$ is commutative, from Nakayama's lemma we have $\Psi(M)=\operatorname{Supp}(M /[\mathfrak{n}, \mathfrak{n}] M)$. Now, restriction to \mathfrak{n} corresponds to projection on \mathfrak{n}^{*} and quotient by $[\mathfrak{n}, \mathfrak{n}]$ corresponds to intersection with $\Psi=[\mathfrak{n}, \mathfrak{n}]^{\perp}$.
- However, in non-commutative situation one could even have $V=[\mathfrak{n}, \mathfrak{n}] V$. For example, let $G=G L(3, \mathbb{R})$ and consider the identification of \mathfrak{n} with the Heisenberg Lie algebra $\left\langle x, \frac{d}{d x}, 1\right\rangle$ acting on $V=\mathbb{C}[x]$.

Idea of the proof

- Since $\mathfrak{n} /[\mathfrak{n}, \mathfrak{n}]$ is commutative, from Nakayama's lemma we have $\Psi(M)=\operatorname{Supp}(M /[\mathfrak{n}, \mathfrak{n}] M)$. Now, restriction to \mathfrak{n} corresponds to projection on \mathfrak{n}^{*} and quotient by $[\mathfrak{n}, \mathfrak{n}]$ corresponds to intersection with $\Psi=[\mathfrak{n}, \mathfrak{n}]^{\perp}$.
- However, in non-commutative situation one could even have $V=[\mathfrak{n}, \mathfrak{n}] V$. For example, let $G=G L(3, \mathbb{R})$ and consider the identification of \mathfrak{n} with the Heisenberg Lie algebra $\left\langle x, \frac{d}{d x}, 1\right\rangle$ acting on $V=\mathbb{C}[x]$.
- Let $\mathfrak{b}=\mathfrak{h}+\mathfrak{n}$ be the Borel subalgebra of \mathfrak{g}, let V be a \mathfrak{b}-module. We define the n-adic completion and Jacquet module as follows:
$\widehat{V}=\widehat{V}_{\mathfrak{n}}=\lim _{\longleftarrow} V / \mathfrak{n}^{i} V, \quad J(V)=J_{\mathfrak{b}}(V)=\left(\widehat{V}_{\mathfrak{n}}\right)^{\mathfrak{h} \text {-finite }}$

Sketch of the proof

- Define $n^{\prime}=[\mathfrak{n}, \mathfrak{n}]$ and $C V=H_{0}\left(\mathfrak{n}^{\prime}, V\right)=V / \mathfrak{n}^{\prime} V$.

Sketch of the proof

- Define $n^{\prime}=[\mathfrak{n}, \mathfrak{n}]$ and $C V=H_{0}\left(\mathfrak{n}^{\prime}, V\right)=V / \mathfrak{n}^{\prime} V$.
- (Nakayama) $\Psi(M)=\operatorname{Supp}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(C M)$

Sketch of the proof

- Define $n^{\prime}=[\mathfrak{n}, \mathfrak{n}]$ and $C V=H_{0}\left(\mathfrak{n}^{\prime}, V\right)=V / \mathfrak{n}^{\prime} V$.
- (Nakayama) $\Psi(M)=\operatorname{Supp}_{\mathfrak{v}}(C M)=\operatorname{AnV} \mathcal{V}_{\mathfrak{v}}(C M)$
- (Joseph+Gabber) An $\mathcal{V}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(\widehat{C M})=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))$

Sketch of the proof

- Define $n^{\prime}=[\mathfrak{n}, \mathfrak{n}]$ and $C V=H_{0}\left(\mathfrak{n}^{\prime}, V\right)=V / \mathfrak{n}^{\prime} V$.
- (Nakayama) $\Psi(M)=\operatorname{Supp}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(C M)$
- (Joseph+Gabber) An $\mathcal{V}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(\widehat{C M})=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))$
- (Easy) $J(C M) \approx C(J M)$ as \mathfrak{b}-modules.

Sketch of the proof

- Define $n^{\prime}=[\mathfrak{n}, \mathfrak{n}]$ and $C V=H_{0}\left(\mathfrak{n}^{\prime}, V\right)=V / \mathfrak{n}^{\prime} V$.
- (Nakayama) $\Psi(M)=\operatorname{Supp}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(C M)$
- (Joseph+Gabber) AnV $\mathcal{V}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(\widehat{C M})=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))$
- (Easy) $J(C M) \approx C(J M)$ as \mathfrak{b}-modules.
- (Bernstein+Joseph)
$\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))=\operatorname{As}_{\mathcal{V}}(C(J M))=\operatorname{As} \mathcal{V}_{\mathfrak{n}}(J M) \cap \Psi$.

Sketch of the proof

- Define $n^{\prime}=[\mathfrak{n}, \mathfrak{n}]$ and $C V=H_{0}\left(\mathfrak{n}^{\prime}, V\right)=V / \mathfrak{n}^{\prime} V$.
- (Nakayama) $\Psi(M)=\operatorname{Supp}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(C M)$
- (Joseph+Gabber) AnV $\mathcal{V}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(\widehat{C M})=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))$
- (Easy) $J(C M) \approx C(J M)$ as \mathfrak{b}-modules.
- (Bernstein+Joseph)
$\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))=\operatorname{As}_{\mathcal{V}_{\mathfrak{v}}}(C(J M))=\operatorname{As} \mathcal{V}_{\mathfrak{n}}(J M) \cap \Psi$.
- (Ginzburg+ENV) As $\mathcal{V}_{\mathfrak{n}}(J M) \supset \operatorname{As} \mathcal{V}_{\mathfrak{n}}(M) \cap \Psi$.

Sketch of the proof

- Define $n^{\prime}=[\mathfrak{n}, \mathfrak{n}]$ and $C V=H_{0}\left(\mathfrak{n}^{\prime}, V\right)=V / \mathfrak{n}^{\prime} V$.
- (Nakayama) $\Psi(M)=\operatorname{Supp}_{\mathfrak{v}}(C M)=\operatorname{AnV} \mathcal{V}_{\mathfrak{v}}(C M)$
- (Joseph+Gabber) AnV $\mathcal{V}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(\widehat{C M})=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))$
- (Easy) $J(C M) \approx C(J M)$ as \mathfrak{b}-modules.
- (Bernstein+Joseph) $\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))=\operatorname{As}_{\mathcal{v}}(C(J M))=\operatorname{As} \mathcal{V}_{\mathfrak{n}}(J M) \cap \Psi$.
- (Ginzburg+ENV) As $\mathcal{V}_{\mathfrak{n}}(J M) \supset \operatorname{As} \mathcal{V}_{\mathfrak{n}}(M) \cap \Psi$.
- (Casselman-Osborne+Gabber) As $\mathcal{V}_{\mathfrak{n}}(M)=p r_{\mathfrak{n}^{*}}\left(\operatorname{As}_{\mathfrak{g}}(M)\right)$.

Sketch of the proof

- Define $n^{\prime}=[\mathfrak{n}, \mathfrak{n}]$ and $C V=H_{0}\left(\mathfrak{n}^{\prime}, V\right)=V / \mathfrak{n}^{\prime} V$.
- (Nakayama) $\Psi(M)=\operatorname{Supp}_{\mathfrak{v}}(C M)=\operatorname{AnV} \mathcal{V}_{\mathfrak{v}}(C M)$
- (Joseph+Gabber) An $\mathcal{V}_{\mathfrak{v}}(C M)=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(\widehat{C M})=\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))$
- (Easy) $J(C M) \approx C(J M)$ as \mathfrak{b}-modules.
- (Bernstein+Joseph)
$\operatorname{An} \mathcal{V}_{\mathfrak{v}}(J(C M))=\operatorname{As}_{\mathcal{v}}(C(J M))=\operatorname{As} \mathcal{V}_{\mathfrak{n}}(J M) \cap \Psi$.
- (Ginzburg+ENV) As $\mathcal{V}_{\mathfrak{n}}(J M) \supset \operatorname{As} \mathcal{V}_{\mathfrak{n}}(M) \cap \Psi$.
- (Casselman-Osborne+Gabber) As $\mathcal{V}_{\mathfrak{n}}(M)=p r_{\mathfrak{n}^{*}}\left(\operatorname{As} \mathcal{V}_{\mathfrak{g}}(M)\right)$.
- Thus $\Psi(M) \supset p r_{\mathfrak{n}^{*}}\left(\operatorname{As}_{\mathfrak{g}}(M)\right) \cap \Psi$; other inclusion is easy.

Proof of Theorem 3

Proof.

For $G L(n, \mathbb{R})$ and $S L(n, \mathbb{C}) \sim$ Jordan form

- Orbits for $S_{2 n}(\mathbb{C})$ or $O_{n}(\mathbb{C}) \sim$ partitions satisfying certain conditions

Proof of Theorem 3

Proof.

For $G L(n, \mathbb{R})$ and $S L(n, \mathbb{C}) \sim$ Jordan form

- Orbits for $S_{2 n}(\mathbb{C})$ or $O_{n}(\mathbb{C}) \sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity

Proof of Theorem 3

Proof.

For $G L(n, \mathbb{R})$ and $S L(n, \mathbb{C}) \sim$ Jordan form

- Orbits for $S_{2 n}(\mathbb{C})$ or $O_{n}(\mathbb{C}) \sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
- For each partition λ and each k there is a partition $\mu \leq \lambda$, which meets Ψ and satisfies $\mu_{1}+\cdots+\mu_{k}=\lambda_{1}+\cdots+\lambda_{k}$

Proof of Theorem 3

Proof.

For $G L(n, \mathbb{R})$ and $S L(n, \mathbb{C}) \sim$ Jordan form

- Orbits for $S_{2 n}(\mathbb{C})$ or $O_{n}(\mathbb{C}) \sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
- For each partition λ and each k there is a partition $\mu \leq \lambda$, which meets Ψ and satisfies $\mu_{1}+\cdots+\mu_{k}=\lambda_{1}+\cdots+\lambda_{k}$
- Result for $S O_{n}(\mathbb{C})$ requires slight additional argument.

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $\underline{F_{4}\left(a_{1}\right)}$ and $\underline{F_{4}\left(a_{2}\right)}$

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $F_{4}\left(a_{1}\right)$ and $F_{4}\left(a_{2}\right)$
(2) $\overline{F_{4}\left(a_{3}\right)}$ and $\overline{C_{3}\left(a_{1}\right)}$

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $F_{4}\left(a_{1}\right)$ and $F_{4}\left(a_{2}\right)$
(2) $\overline{F_{4}\left(a_{3}\right)}$ and $\overline{C_{3}\left(a_{1}\right)}$
- For $G=E_{6}$:

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $F_{4}\left(a_{1}\right)$ and $F_{4}\left(a_{2}\right)$
(2) $\overline{F_{4}\left(a_{3}\right)}$ and $\overline{C_{3}\left(a_{1}\right)}$
- For $G=E_{6}$:
(1) $\underline{E_{6}\left(a_{1}\right)}$ and $\underline{D_{5}}$

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $F_{4}\left(a_{1}\right)$ and $F_{4}\left(a_{2}\right)$
(2) $\overline{F_{4}\left(a_{3}\right)}$ and $\overline{C_{3}\left(a_{1}\right)}$
- For $G=E_{6}$:
(1) $\underline{E_{6}\left(a_{1}\right)}$ and $\underline{D_{5}}$
(2) $\overline{D_{4}\left(a_{1}\right)}$ and $A_{3}+A_{1}$

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $F_{4}\left(a_{1}\right)$ and $F_{4}\left(a_{2}\right)$
(2) $\overline{F_{4}\left(a_{3}\right)}$ and $\overline{C_{3}\left(a_{1}\right)}$
- For $G=E_{6}$:
(1) $E_{6}\left(a_{1}\right)$ and $\underline{D_{5}}$
(2) $\overline{D_{4}\left(a_{1}\right)}$ and $A_{3}+A_{1}$
- For $\overline{G=E_{7}}$:

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $F_{4}\left(a_{1}\right)$ and $F_{4}\left(a_{2}\right)$
(2) $\overline{F_{4}\left(a_{3}\right)}$ and $\overline{C_{3}\left(a_{1}\right)}$
- For $G=E_{6}$:
(1) $\underline{E_{6}\left(a_{1}\right)}$ and $\underline{D_{5}}$
(2) $\overline{D_{4}\left(a_{1}\right)}$ and $\overline{A_{3}}+A_{1}$
- For $\overline{G=E_{7}}$:
(1) $\underline{E_{7}\left(a_{1}\right)}$ and $\underline{E_{7}\left(a_{2}\right)}$

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $F_{4}\left(a_{1}\right)$ and $F_{4}\left(a_{2}\right)$
(2) $\overline{F_{4}\left(a_{3}\right)}$ and $\overline{C_{3}\left(a_{1}\right)}$
- For $G=E_{6}$:
(1) $\underline{E_{6}\left(a_{1}\right)}$ and $\underline{D_{5}}$
(2) $\overline{D_{4}\left(a_{1}\right)}$ and $\overline{A_{3}}+A_{1}$
- For $\overline{G=E_{7}}$:
(1) $E_{7}\left(a_{1}\right)$ and $\underline{E_{7}\left(a_{2}\right)}$
(2) $\overline{E_{7}\left(a_{3}\right)}$ and $\overline{D_{6}}$

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G=G_{2}: \underline{G_{2}\left(a_{1}\right)}$ and $\widetilde{A_{1}}$
- For $G=F_{4}$:
(1) $F_{4}\left(a_{1}\right)$ and $F_{4}\left(a_{2}\right)$
(2) $\overline{F_{4}\left(a_{3}\right)}$ and $\overline{C_{3}\left(a_{1}\right)}$
- For $G=E_{6}$:
(1) $\underline{E_{6}\left(a_{1}\right)}$ and $\underline{D_{5}}$
(2) $\overline{D_{4}\left(a_{1}\right)}$ and $\overline{A_{3}}+A_{1}$
- For $\overline{G=E_{7}}$:
(1) $\frac{E_{7}\left(a_{1}\right)}{E_{7}\left(a_{3}\right)}$ and $E_{7}\left(a_{2}\right)$
(2) $\overline{E_{7}\left(a_{3}\right)}$ and $\overline{D_{6}}$
(3) $\underline{E_{6}\left(a_{1}\right)}$ and $\underline{E_{7}\left(a_{4}\right)}$.

Counterexamples for exceptional groups

- For $G=E_{8}$:

Counterexamples for exceptional groups

- For $G=E_{8}$:
(1) $\underline{E_{8}\left(a_{1}\right)}, \underline{E_{8}\left(a_{2}\right)}$, and $\underline{E_{8}\left(a_{3}\right)}$

Counterexamples for exceptional groups

- For $G=E_{8}$:
(1) $E_{8}\left(a_{1}\right), E_{8}\left(a_{2}\right)$, and $E_{8}\left(a_{3}\right)$
(2) $\overline{E_{8}\left(a_{4}\right)}, \overline{E_{8}\left(b_{4}\right)}$ and $\underline{E_{8}\left(a_{5}\right)}$

Counterexamples for exceptional groups

- For $G=E_{8}$:
(1) $E_{8}\left(a_{1}\right), E_{8}\left(a_{2}\right)$, and $E_{8}\left(a_{3}\right)$
(2) $\overline{E_{8}\left(a_{4}\right)}, \overline{E_{8}\left(b_{4}\right)}$ and $\overline{E_{8}\left(a_{5}\right)}$
(3) $\overline{E_{7}\left(a_{1}\right)}, \overline{E_{8}\left(b_{5}\right)}$ and $\overline{E_{7}\left(a_{2}\right)}$

Counterexamples for exceptional groups

- For $G=E_{8}$:
(1) $E_{8}\left(a_{1}\right), E_{8}\left(a_{2}\right)$, and $E_{8}\left(a_{3}\right)$
(2) $E_{8}\left(a_{4}\right), E_{8}\left(b_{4}\right)$ and $E_{8}\left(a_{5}\right)$
(3) $E_{7}\left(a_{1}\right), \overline{E_{8}\left(b_{5}\right)}$ and $\overline{E_{7}\left(a_{2}\right)}$
(9) $\underline{E_{8}\left(a_{6}\right)}$ and $\underline{D_{7}\left(a_{1}\right)}$

Counterexamples for exceptional groups

- For $G=E_{8}$:
(1) $E_{8}\left(a_{1}\right), E_{8}\left(a_{2}\right)$, and $E_{8}\left(a_{3}\right)$
(2) $\overline{E_{8}\left(a_{4}\right)}, \overline{E_{8}\left(b_{4}\right)}$ and $\overline{E_{8}\left(a_{5}\right)}$
(3) $E_{7}\left(a_{1}\right), E_{8}\left(b_{5}\right)$ and $\overline{E_{7}\left(a_{2}\right)}$
(9) $E_{8}\left(a_{6}\right)$ and $\frac{D_{7}\left(a_{1}\right)}{E_{7}\left(a_{4}\right)}$
(6) $\overline{E_{6}\left(a_{1}\right)}$ and $\underline{E_{7}\left(a_{4}\right)}$

Counterexamples for exceptional groups

- For $G=E_{8}$:
(1) $E_{8}\left(a_{1}\right), E_{8}\left(a_{2}\right)$, and $E_{8}\left(a_{3}\right)$
(2) $\overline{E_{8}\left(a_{4}\right)}, \overline{E_{8}\left(b_{4}\right)}$ and $\overline{E_{8}\left(a_{5}\right)}$
(3) $E_{7}\left(a_{1}\right), \overline{E_{8}\left(b_{5}\right)}$ and $\overline{E_{7}\left(a_{2}\right)}$
(9) $E_{8}\left(a_{6}\right)$ and $\frac{D_{7}\left(a_{1}\right)}{E_{7}\left(a_{4}\right)}$
(5) $\overline{E_{6}\left(a_{1}\right)}$ and $\overline{E_{7}\left(a_{4}\right)}$
(0) $E_{8}\left(a_{7}\right), E_{7}\left(a_{5}\right), E_{6}\left(a_{3}\right)+A_{1}$, and $D_{6}\left(a_{2}\right)$.

